Nitroreductase (NTR) belongs to a class of flavin mononucleotide-dependent and flavin adenine dinucleotide-dependent cytoplasmic enzymes; its contents in tumor cells increase during hypoxia. The development of fluorescent probes for detection of NTR activity is of great significance for the study of the state of hypoxia in living organisms. In this paper, a red-emitting fluorescence turn-on probe EBI-NO2 was synthesized using a one-step method. The fluorescence of the probe was enhanced by 60 folds in the presence of NTR. The probe also had high selectivity towards NTR, and its detection limit was as low as 1ng/mL. The reaction mechanism was verified using MS, molecular docking and theoretical calculations. In addition, it was successfully applied in real-time monitoring of NTR produced during growth of Escherichia coli (BL21) and in visualization of NTR in oral cancer cells (Cal-27) under hypoxia. This work provides a new imaging tool that can be applied to investigate the physiological and pathological changes in hypoxia oral cells.