Tinospora sagittata is rich in secondary metabolites used in traditional medicine. However, environmental factors impact key enzymes in metabolite synthesis, highlighting the need for improved growth conditions. This study employs transcriptomics and metabolomics to assess nitrogen's impact on enzymes in secondary metabolites biosynthesis pathways. The gene expressions of berberine bridge enzymes (BBEs) like TsBBE2 had peak expression in low nitrogen treatments (A0 and A1) but were absent in higher nitrogen treatments (A2 and A3). Similar trends were observed for other enzymes such as (S)-scoulerine 9-O-methyltransferase (TsCMT3), Tetrahydroberberine oxidase (TsSTOX), and Columbamine O-methyltransferase (TsCoCOMT2-4) in response to nitrogen levels. In examining gene families related to diterpene synthases (diTPS), 1-deoxyxylulose 5-phosphate synthase (TsDXR1) expression increased with higher nitrogen fertilizer, while TsDXR2 peaked at maximal nitrogen levels. Geranylgeranyl diphosphate synthase (TsGGPP3 and TsGGPP5) decreased with nitrogen levels. (−)-kolavenyl diphosphate synthase (KPS) genes had higher expression in treatments, while ent-kaurene synthase (KSL) genes, especially TsKSL1 and TsKSL2, showed higher expression in control conditions with lower nitrogen fertilizer. Metabolite analysis confirmed more upregulated compounds in A3 compared to A0. These findings have practical implications for agriculture and pharmaceuticals, highlighting the link between nitrogen fertilization and specialized metabolism in medicinal plants.