We assessed the effects of ultra dry-air plasma surface treatments on the properties of Al2O3-GPTMS-PMMA hybrid dielectric layers for applications to high-performance amorphous Indium Gallium Zinc Oxide (a-IGZO) thin film transistors (TFTs). The hybrid layers were deposited by an easy dip coating sol-gel process at low temperature and then treated with dry-air plasma at 1, 2 and 3 consecutive cycles. Their properties were analyzed as a function of the number of plasma cycles and contrasted with those of the untreated ones. The dielectric characteristics of the hybrid layers were determined from I–V and C–f measurements performed on metal–insulator–metal and metal–insulator–semiconductor devices. The results show that the plasma treatments increase the surface energy and wettability of the hybrid films. There is also a reduction of the OH groups and oxygen vacancies in the hybrid network improving the dielectric properties. The incorporation of nitrogen into the hybrid films surface is also observed. The plasma-treated hybrid dielectric layers were applied as dielectric gate in the fabrication of a-IGZO TFTs. The best electrical performance of the fabricated TFTs was achieved with the 3 cycles plasma-treated hybrid dielectric gate, showing high mobility, 29.3 cm2 V−1 s−1, low threshold voltage, 2.9 V, high I ON/OFF current ratio, 106, and low subthreshold swing of 0.42 V dec−1.