Asphalts for pavement and roofing are known to emit volatile organic compounds (VOCs), contributing to air pollution, including the formation of ozone and secondary organic aerosols, which further worsen air quality. These emissions become more pronounced with higher sun intensity and higher temperature, accelerating the loss of essential components and the aging of bitumen. Consequently, the durability and functionality of bitumen are compromised. In this study, we investigate the efficacy of nitrogen-carrying functional groups in biochar at retaining VOCs in bitumen and prolonging the service life of asphalt surfaces. Biochar derived by hydrothermal liquefaction of red microalgae, rich in N-functional groups, is compared with low-N biochar obtained through acid-washing. Laboratory tests demonstrate that bitumen modified with high-N biochar exhibits greater resistance to aging after 200 h of ultraviolet radiation exposure compared to bitumen modified with low-N biochar. The values of an aging index based on the crossover modulus and an aging index based on the crossover frequency indicate greater susceptibility to aging in neat bitumen compared to biochar-modified bitumen, and bitumen modified with high-N biochar showed the lowest aging index. Compared to neat bitumen, measurements of carbonyl and sulfoxide as aging indicators showed an improvement of 12.9% for high-N biochar in slowing bitumen aging, while low-N biochar provided only a 3.1% improvement. Dynamic vapor sorption analysis showed 35% less mass loss in bitumen with high-N biochar compared to bitumen with low-N biochar. These improvements can be attributed to the increased retention of VOCs in bitumen facilitated by the N-functional groups in high-N biochar. Modeling with density functional theory shows the mechanisms by which biochar rich in N-functional groups exhibits enhanced adsorption of VOCs. This modeling highlights the importance of biochar's nitrogen functional groups in biochar's electronic structure and molecular structure in retaining VOCs in the bitumen matrix. The study outcomes promote sustainability and resource conservation in the construction industry and align with goals of carbon neutrality.