Biological nitrogen fixation is the most important process in which some prokaryotic organisms fix N2 into ammonium. From an agricultural standpoint, biological nitrogen fixation (BNF) is critical because industrial production of nitrogen fertilizers seldom meets agricultural demands. To increase the BNF is one of the main challenges for the future. There are different possibilities for extending biological nitrogen fixation to the economically important plants. One of the possibilities is to create new artificial systems between diazotrophic bacteria and different higher plants. This is the main topic of the present review article which discusses the establishment of new associative and/or symbiotic systems, via introduction of diazotrophic bacteria into the roots by different methods; and incorporation of nitrogen-fixing bacteria in the entire plant by in vitro methods, through the establishment of intracellular endosymbioses via induced uptake of bacteria by plant protoplasts (endocytobiosis), and establishment of intercellular associations by forced introduction of bacteria into the plant tissues (exocytobiosis). The common characteristic of the methods to create artificial plant-microbe systems for atmospheric nitrogen fixation is the use of in vitro plant systems: cells, tissues and organ cultures. The review pays particular attention to new bacterial inoculation procedures for introduction of the diazotrophic bacteria inside the plant tissues.