Simple SummaryAs sessile organisms, plants are constantly exposed to diverse environmental stresses of which water deficit is the most significant because it limits plant growth, development, and productivity. In this work, we showed the influence of non-irrigation treatment on changes in maize leaf metabolite content. We argued that the different susceptibility of maize inbred lines to long-term water deficit will result in different patterns of change in metabolite accumulation. We emphasized the need for the careful interpretation of the level and type of accumulated metabolites in order to assess the drought tolerance status of maize inbred lines in terms of improved grain yield exhibited under severe water deficit conditions. Leaf metabolites that have contributed to higher grain yield under the condition of long-term water deficit could be considered as biochemical markers useful in breeding drought-tolerant maize.Plants reconfigure their metabolic pathways to cope with water deficit. The aim of this study was to determine the status of the physiological parameters and the content of phenolic acids in the upper most ear leaf of maize inbred lines contrasting in drought tolerance in terms of improved plant productivity e.g., increased grain yield. The experiment was conducted under irrigation and rain-fed conditions. In drought-tolerant lines, the effect of water deficit was reflected through a chlorophyll and nitrogen balance index increase followed by a flavonols index decrease. The opposite trend was noticed in drought susceptible inbreds, with the exception of the anthocyanins index. Moreover, in comparison to irrigation treatment, opposite trends in the correlations between grain yield and physiological parameters found under water deficit conditions indicated the activation of different metabolic pathways in defense against water deficit stress. Concerning phenolic acid content, water deficit caused the reduction of protocatechuic, caffeic, and sinapic acid in all inbreds evaluated. However, the highly pronounced increase of ferulic and especially cinnamic acid content under water deficit conditions indicated possible crucial role of these secondary metabolites in preventing the harmful effects of water deficit stress, which, in turn, might be useful in maize breeding selection for drought tolerance.
Read full abstract