Transient or recurring blooms of ammonia-oxidizing archaea (AOA) have been reported in several estuarine and coastal environments, including recent observations of AOA blooms in South San Francisco Bay (SFB). Here, we measured nitrification rates, quantified AOA abundance, and analyzed both metagenomic and metatranscriptomic data to examine the dynamics and activity of nitrifying microorganisms over the course of an AOA bloom in South SFB during the autumn of 2018 and seasonally throughout 2019. Nitrification rates were correlated with AOA abundance in qPCR data and both increased several orders of magnitude between the autumn AOA bloom and spring and summer seasons. From bloom samples, we recovered an extremely abundant, high-quality Ca. Nitrosomarinus catalina-like AOA metagenome-assembled genome (MAG) that had high transcript abundance during the bloom and expressed >80% of genes in its genome. We also recovered a putative nitrite-oxidizing bacteria (NOB) MAG from within the Nitrospinaceae that was of much lower abundance and had lower transcript abundance than AOA. During the AOA bloom, we observed increased transcript abundance for nitrogen uptake and oxidative stress genes in non-nitrifier MAGs. This study confirms AOA are not only abundant, but also highly active during blooms oxidizing large amounts of ammonia to nitrite - a key intermediate in the microbial nitrogen cycle - and producing reactive compounds that may impact other members of the microbial community.
Read full abstract