Low back pain is the most common health problem with a prevalence of over 80% worldwide and an estimated annual cost of $100 billion in the United States. Intervertebral disc degeneration accounts for a major cause of low back pain. However, there is still a lack of safe and effective treatment to tackle this devastating condition. In this study, we synthesized four functionalized trimetallic nitride endohedral metallofullerenes (carboxyl-f-Sc3N@C80, carboxyl-f-Gd3N@C80, amino-f-Sc3N@C80, and amino-f-Gd3N@C80) and characterized them with X-ray photoelectron spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and UV-vis. Via electron paramagnetic resonance, all four metallofullerene derivatives possessed dose-dependent radical scavenging capabilities (hydroxyl radicals and superoxide anions), with the most promising radical scavenging properties shown in the amine functionalized C80 metallofullerenes. Both amino-f-Sc3N@C80 and amino-f-Gd3N@C80 at 1 μM significantly reduced lipopolysaccharide induced reactive oxygen species production and mRNA expressions of pro-inflammatory mediators (inos, tnf-α, il-1, and cox-2) in macrophages without apparent cytotoxicity through regulating activity of p38 MAPK, p65, and nuclear translocation of NF-κB. Furthermore, in an established mouse model of lumbar radiculopathy, amino-f-Sc3N@C80 and amino-f-Gd3N@C80 effectively alleviated ipsilateral mechanical hyperalgesia for up to 2 weeks. In dorsal root ganglia explant culture, we also showed that amino-f-Sc3N@C80 and amino-f-Gd3N@C80 ameliorated TNF-α elicited neuroinflammation. In summary, we presented results for a potent radical scavenging, anti-inflammatory and analgesic nanoparticle, amino-functionalized eighty-carbon metallofullerenes in vitro and in vivo. Our study provides important assets for developing pleiotropic treatment strategies to tackle the inflammation, a significant pathological hallmark in the intervertebral disc degeneration and associated pain.
Read full abstract