Background and aimThere are few long-term studies of respiratory health effects of landscape fires, despite increasing frequency and intensity due to climate change. We investigated the association between exposure to coal mine fire PM2.5 and fractional exhaled nitric oxide (FeNO) concentration 7.5 years later.MethodsAdult residents of Morwell, who were exposed to the 2014 Hazelwood mine fire over 6 weeks, and unexposed residents of Sale, participated in the Hazelwood Health Study Respiratory Stream in 2021, including measurements of FeNO concentration, a marker of eosinophilic airway inflammation. Individual exposure to coal mine fire PM2.5 was modelled and mapped to time-location diaries. The effect of exposure to PM2.5 on log-transformed FeNO in exhaled breath was investigated using multivariate linear regression models in the entire sample and stratified by potentially vulnerable subgroups.ResultsA total of 326 adults (mean age: 57 years) had FeNO measured. The median FeNO level (interquartile range [IQR]) was 17.5 [15.0] ppb, and individual daily exposure to coal mine fire PM2.5 was 7.2 [13.8] µg/m3. We did not identify evidence of association between coal mine fire PM2.5 exposure and FeNO in the general adult sample, nor in various potentially vulnerable subgroups. The point estimates were consistently close to zero in the total sample and subgroups.ConclusionDespite previous short-term impacts on FeNO and respiratory health outcomes in the medium term, we found no evidence that PM2.5 from the Hazelwood coal mine fire was associated with any long-term impact on eosinophilic airway inflammation measured by FeNO levels.
Read full abstract