Naphthenic acid (NA) is a toxic pollutant with potential threat to human health. However, NA transformations in marine environments are still unclear. In this study, the characteristics and pathways of cyclohexanecarboxylic acid (CHCA) biodegradation were explored in the presence of nitrate. The results showed that CHCA was completely degraded with pseudo-first-order kinetic reaction under aerobic and anaerobic conditions, accompanied by nitrate removal rates exceeding 70%, which was positively correlated with CHCA degradation (P < 0.05). In the proposed CHCA degradation pathways, cyclohexane is dehydrogenated to form cyclohexene, followed by ring-opening by dioxygenase to generate fatty acid under aerobic conditions or cleavage of cyclohexene through β-oxidation under anaerobic conditions. Whole genome analysis indicated that nitrate was removed via assimilation and dissimilation pathways under aerobic conditions and via denitrification pathway under anaerobic conditions. These results provide a basis for alleviating combined pollution of NA and nitrate in marine environments with frequent anthropogenic activities.
Read full abstract