The transformation ratchetting of super-elastic NiTi shape memory alloy was observed by the uniaxial stress-controlled cyclic tests [Kang, G.Z., Kan, Q.H., Qian, L.M., Liu, Y.J, 2009a. Ratchetting deformation of super-elastic and shape memory NiTi Alloys. Mech. Mater. 41, 139–153]. It is concluded that the NiTi alloy presents apparent ratchetting behaviour, and the ratchetting is collectively caused by the cyclic accumulation of residual induced-martensite and the transformation-induced plastic deformation (i.e., namely transformation ratchetting). Based on the experimental results, a cyclic constitutive model was constructed in the framework of generalized plasticity [Lubliner, J., Auricchio, F., 1996. Generalized plasticity and shape memory alloys. Int. J. Solids Struct. 33, 991–1003] to describe the transformation ratchetting of super-elastic NiTi alloy. The proposed model simultaneously accounts for the evolutions of residual induced-martensite and transformation-induced plastic strain during the stress-controlled cyclic loading by introducing an internal variable z c , i.e., cumulated induced-martensite volume fraction. The dependence of transformation ratchetting on the applied stress levels and the phase transformation hardening behaviour of the NiTi alloy are also considered in the developed model. The anisotropic phase transformation behaviours of the alloy presented in the tension and compression cases are described by employing a Drucker–Prager-typed transformation surface. It is shown that the simulated results of transformation ratchetting obtained by the proposed model are in good agreement with the corresponding experiments, since the typical features of transformation ratchetting are reasonably captured by the proposed model.
Read full abstract