NBS1, a protein linked to the autosomal recessive disorder Nijmegen breakage syndrome, plays an essential role in the DNA damage response and DNA repair. Despite its importance, the mechanisms regulating NBS1 and the impact of this regulation on DNA repair processes remain obscure. In this study, we discovered a new post-translational modification of NBS1, ADP-ribosylation. This modification can be removed by the NUDT16 hydrolase. The loss of NUDT16 results in a reduction of NBS1 protein levels due to NBS1 PARylation-dependent ubiquitination and degradation, which is mediated by the PAR-binding E3 ubiquitin ligase, RNF146. Importantly, ADP-ribosylation of NBS1 is crucial for its localization at DSBs and its involvement in homologous recombination (HR) repair. Additionally, the NUDT16-NBS1 interaction is regulated in response to DNA damage, providing further rationale for NBS1 regulation by NUDT16 hydrolase. In summary, our study unveils the critical role of NUDT16 in governing both the stability of NBS1 and recruitment of NBS1 to DNA double-strand breaks, providing novel insights into the regulation of NBS1 in the HR repair pathway.