AbstractHigh‐Intensity Long‐Duration Continuous AE Activity (HILDCAA) intervals are driven by High Speed solar wind Streams (HSSs) during which the rapidly‐varying interplanetary magnetic field (IMF) produces high but intermittent dayside reconnection rates. This results in several days of large, quasi‐periodic enhancements in the auroral electrojet (AE) index. There has been debate over whether the enhancements in AE are produced by substorms or whether HILDCAAs represent a distinct class of magnetospheric dynamics. We investigate 16 HILDCAA events using the expanding/contracting polar cap model as a framework to understand the magnetospheric dynamics occurring during HSSs. Each HILDCAA onset shows variations in open magnetic flux, dayside and nightside reconnection rates, the cross‐polar cap potential, and AL that are characteristic of substorms. The enhancements in AE are produced by activity in the pre‐midnight sector, which is the typical substorm onset region. The periodicities present in the intermittent IMF determine the exact nature of the activity, producing a range of behaviors from a sequence of isolated substorms, through substorms which merge into one‐another, to almost continuous geomagnetic activity. The magnitude of magnetic fluctuations, dB/dt, in the pre‐midnight sector during HSSs is sufficient to produce a significant risk of Geomagnetically Induced Currents.