The surface melting of a NiTi superelastic alloy using a high-power laser Yb:Fiber was investigated. The influence of this process on the microstructural and mechanical properties was also examined. The reference material was a 3 mm nitinol strip with a homogeneous austenitic B2 phase. For the laser surface melting process, input fluences were applied from 17.5 to 45 J/mm2. The morphology of the structure and the chemical composition of several regions were determined by optical microscopy, scanning electron microscopy, dispersive energy spectra, and X-ray diffraction techniques. The mechanical properties, such as modulus of elasticity and hardness, were determined using nanoindentation and microindentation techniques. The greatest surface finishing of the fusion zone was observed for the condition 35 J/mm2. Three well-defined regions (fusion zone (FZ), heat-affected zone (HAZ), base metal (BM)) could be observed and dimensions of grain size, width, and depth of the melted pool were directly affected by the laser fluence. The geometry of the molten pool could be controlled by the optimization of the laser parameters. High laser fluence caused preferential volatilization of nickel, dynamic precipitation of intermetallic phases, including Ti2Ni, Ni3Ti, and Ni4Ti3, as well as solubilization of TiC in the matrix, which led to grain refinement. Thus, high laser fluence is a suitable technique to enhance mechanical properties such as hardness and Young’s modulus.
Read full abstract