The concern of this experimental work is to study the surface integrity aspects such as surface morphology, three-dimensional surface topography, recast layer, phase analysis, and micro-hardness for Ni55.95Ti44.05 shape memory alloy at the optimized level of wire electric discharge machining parameters. A mathematical model was developed for surface roughness and material removal rate considering servo voltage, pulse on time, wire tension, wire feed rate, and pulse off time using response surface methodology technique. In order to obtain the optimized parameters, multi-objective optimization technique grey relation analysis was utilized. The adequacy of the developed model was also checked by analysis of variance. At optimal parameters setting, i.e., pulse on time 123 µs, pulse off time 58 µs, servo voltage 50 V, wire tension 3 N, and wire feed rate 5 m/min, maximum material removal rate (8.223 mm3/min) and minimum surface roughness (1.93 µm) were achieved. Surface characteristics of machined surface divulge the presence of discharge craters, debris, molten droplets, micro-voids, spherical nodules, and cracks. A recast layer of thickness 19 µm with approximately 21% of foreign elements was deposited on the machined surface at optimized parameters, whereas the micro-hardness of the outer machined surface was found to be increased approximately 1.98 times as compared to micro-hardness of bulk material. X-ray diffraction analysis shows the presence of the following compounds on the machined surface NiTi, Ni4Ti3, Ti4O3, Cu5Zn8, Ni(TiO3), and NiZn.
Read full abstract