The possibility of stabilizing different amounts of medium-entropy intermetallic compounds (MEIMCs) within a multicomponent matrix using laser cladding is demonstrated. The results indicated that MEIMC with a B2 structure could be successfully formed within a multicomponent BCC matrix during laser cladding of a proper ratio of Al, Fe, Co, Cu, Mn, and Ni powders. Two coatings with different contents of MEIMC were fabricated by changing the feeding rate of the powder mixture. Based on the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analyses, the Al-rich intermetallic particles were qualitatively identified as (Fe0.55Co0.18Cu0.22Ni0.03Mn0.02)Al MEIMC. It was also found that the feeding rate affects the content of MEIMC, and consequently, the grain structure and microhardness values. Finally, we propose MEIMC-reinforced alloys as a more effective alternative system to be used for fabricating high-performance coatings using laser cladding.