In this work, polyacrylonitrile (PAN)-based carbon fibers coated with different thicknesses of Ni-P coatings were studied. The coatings were deposited by electroless metallization lasting from 3 to 22 min and consisted of approximately 3 wt.% phosphorous. Computer quantitative image analysis was used to characterize the surface features and thickness of the coatings as a function of the time of metallization. The results showed that quantitative image analysis is a useful technique for the measurement of the coating thickness and can be used as a tool for obtaining an innovative description of the Ni-P coating morphology. The morphology of the coatings and their thicknesses were investigated by scanning electron microscopy. The image analyses were performed using the proprietary software Micrometer, developed at the Faculty of Materials Science and Engineering, Warsaw University of Technology. The observations revealed that a specific feature of the coating topography is the hemispherical bulge of a diameter ranging from 0.1 to 10 μm. The thickness of the coatings increases linearly with the metallization time. The obtained results indicated that the methodology proposed in the present work can be successfully applied and possesses several advantages over the traditionally used weight measurements technique.