Electrochemical water splitting has been considered as a key pathway to generate environmentally friendly green hydrogen energy and it is essential to design highly efficient electrocatalysts at affordable cost to facilitate the redox reactions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this work, a novel micro-clustered Ru/CuMnBP electrocatalyst is introduced, prepared via hydrothermal deposition and soaking-assisted Ru doping approaches on Ni foam substrate. Ru/CuMnBP micro-clusters exhibit relatively low HER/OER turnover overpotentials of 11 mV and 85 mV at 10 mA/cm2 in 1 M KOH. It also demonstrates a low 2-E turnover cell voltage of 1.53 V at 10 mA/cm2 for the overall water-splitting, which is comparable with the benchmark electrodes of Pt/C||RuO2. At a super high-current density of 2000 mA/cm2, the dual functional Ru/CuMnBP demonstrates an exceptionally low 2-E cell voltage of 3.13 V and also exhibits superior stability for over 10 h in 1 M KOH. Excellent electrochemical performances originate from the large electrochemical active surface area with the micro cluster morphology, high intrinsic activity of CuMnBP micro-clusters optimized through component ratio adjustment and the beneficial Ru doping effect, which enhances active site density, conductivity and stability. The usage of Ru in small quantities via the simple soaking doping approach significantly improves electrochemical reaction rates for both HER and OER, making Ru/CuMnBP micro-clusters promising candidates for advanced electrocatalytic applications.