A convenient effective microwave pre-pyrolysis treatment to synthesize biomass-based mesoporous carbon with higher nitrogen/oxygen-chelating adsorption for Cu(II) is reported here, in which phosphoric acid impregnated bagasse was used as a microwave absorber and porogen. For comparison, conventional electric-heating pyrolyzed carbon was prepared and doped with nitrogen/oxygen groups. Nitrogen adsorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS) and batch adsorption were employed to investigate the effects of the two pre-pyrolysis modes on the sample physicochemical and Cu(II) adsorptive properties. The 22-min-microwave-pyrolyzed bagasse mesoporous activated carbon (MBAC, 85.32% mesoporosity) contained 10.52% O, which is 3.94% more than electric-heating pyrolyzed mesoporous activated carbon (89.52% mesoporosity). After electrophilic aromatic substitutions of N/O doping, the former possessed more N (5.83%) and more O (21.40%), confirming that time-saving energy-efficient microwave pyrolysis favors the formation of defective C/O atoms in or at the edges of the graphite layer of MBAC, which are highly active and tend to act as preferred reactive positions for the doping of N/O-containing groups simultaneously compared with conventional electric-heating pyrolysis. These N and O species existed mainly as COOH, OH, NH and NH2 functional groups, and were confirmed by XPS to be active sites for metal binding via electrostatic attraction, hydrogen bonding, a chelate effect and complexation, resulting in the great enhancement of Cu(II) adsorption. Langmuir isotherm and pseudo-second-order kinetic fitting further proved that Cu(II) adsorption by N/O-doped MBAC is ascribed mainly to chemisorption. Therefore, rapid microwave pre-pyrolysis provides a promising route to prepare excellent-performance N/O-doped carbon adsorbents.
Read full abstract