Erythrina poeppigiana, a woody tropical plant, was inoculated with vesicular-arbuscular mycorrhizal (VAM) fungiGlomus etunicatum Becker and Gerdeman,G. mosseae Nicol. and Gerd. Gerdeman and Trappe, orG. intraradices Schenk and Smith. Growth, N uptake, and nutrition were evaluated in VAM-inoculated plants and controls fertilized with two levels (3 or 6 mM) of either NH inf4 sup+ -N or NO inf3 sup- -N. The response by the mycorrhizal plants to N fertilization, according to N source and/or level differed significantly from that of the control plants. In general, the growth of the mycorrhizal plants was similar to that of the non-mycorrhizal plants when N was provided as NH inf4 sup+ . When the N source was NO inf3 sup- the control plants grew significantly less than the VAM plants. Inoculation with VAM fungi gave yield increases of 255 and 268% forG. etunicatum-colonized plants, 201 and 164% forG. mosseae-colonized plants and 286 and 218% forG. intraradices-colonized plants fertilized with 3 and 6 mM NO inf3 sup- -N, respectively. The increased growth and acquisition of nutrients by plants fertilized with NO inf3 sup- -N and inoculated with VAM shows that VAM mycelium has a capacity for NO inf3 sup- absorption. The results also showed thatE. poeppigiana seedlings preferred NH inf4 sup+ as an N source.G. etunicatum was the most effective endophyte, not only increasing N, P, Ca, Mg, and Zn uptake in the presence of NO inf3 sup- fertilizer but also P and Mg in the presence of NH inf4 sup+ applications. From these results we conclude that VAM symbiosis affects N metabolism inE. poeppigiana plants and that this species can overcome limitations on the use of NO inf3 sup- -N by the mediation of VAM fungi.
Read full abstract