Goal of the review: The utilization of biomarkers to predict cancer risk, prognosis, and treatment outcomes is paramount. Netrin-1 (NTN1), known for its role in commissural axon guidance during embryonic development, has emerged as a versatile molecule with significant implications in cancer and neurobiology. Structurally resembling laminin, Netrin-1 regulates neuronal connectivity and plasticity in adulthood, influencing axonal and dendritic growth, neurotransmission, and cell migration. In addition to its neurological functions, Netrin-1 is increasingly recognized for its involvement in maintaining epithelial tissue and its regulatory roles in fundamental cellular processes, including adhesion, proliferation, differentiation, apoptosis, and angiogenesis.In cancer biology, Netrin-1′s interactions with its receptors, such as DCC [Deleted in Colorectal Cancer] and UNC5 (a homolog of DCC), have been implicated in tumor progression across various physiological systems. Elevated levels of Netrin-1 in colorectal cancer and head and neck squamous cell carcinoma are correlated with increased tumorigenic potential, mediated through pathways involving NFκB activation and anti-apoptotic mechanisms. Mechanically induced hypermethylation and downstream signaling cascades that inhibit apoptosis and promote cell survival are observed upon Netrin-1 binding to DCC.Furthermore, Netrin-1 shows promise as a biomarker for detecting inflammatory activity in diseases such as multiple sclerosis and as a potential diagnostic, prognostic, and therapeutic indicator in oral squamous cell carcinoma. Elevated levels of Netrin-1 in bodily fluids, alongside immunohistochemical evidence, support its potential as a valuable clinical marker in cancer management.This abstract emphasizes Netrin-1′s diverse biological roles, underscoring its potential as a diagnostic tool and therapeutic target in cancer research. The need for further exploration of Netrin-1′s molecular interactions and clinical applications is urgent and crucial to advance personalized medicine approaches and enhance patient outcomes in oncology and neurology.