Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.