The death of retinal ganglion cells (RGCs) is a key factor in the pathophysiology of all forms of glaucoma. RGC culture serves as a simple system for establishing and testing candidate therapies. This study aimed to explore the differentiation of primary retinal progenitor cells (RPCs) into RGC-like cells induced by low-dose cytarabine (Ara-C). RPCs were isolated from the retina of newborn rats and cultured in vitro. Different concentrations of Ara-C were added to the culture medium to induce the differentiation of RPCs into RGC-like cells. Differentiation efficiency was assessed through immunofluorescence staining and cell counting. The addition of Ara-C significantly increased the number of Brn3a/RBPMS double-positive cells. The RPC-RGCs induced displayed characteristic features of RGCs, with roughly 80.9%±6.2% of the cells positive for both TuJ1/NeuN and 77.5%±4.9% for Brn3a/RBPMS. The study demonstrates that the addition of Ara-C to primary cultures of rat RPCs can enhance their differentiation into RGC-like cells, providing a simple and rapid method for obtaining RGC-like cells with a relatively high purity. This method shows considerable promise for advancing glaucoma research and potential therapeutic strategies to restore vision after RGC loss.
Read full abstract