Nuclear structure of unstable nuclei, in particularly the nuclei near the magic number, has been one of the hot topics of nuclear physics study. Near the neutron magic number N=40, 50, rich nuclear structure phonomania appeared in the nickel region, in particularly for the neutron-rich isotopes, have stimulated intensive investigation from both theoretical and experimental aspects. In order to gain a better understanding of the nuclear structure in the nickel region, we choose to study the properties of neutron-rich Zn(Z=30) isotopes. In this paper, after a simple introduction of the laser spectroscopy experiment of Zn isotopes at CERN-ISOLDE, we reviewed the nuclear spins, magnetic moment, electric quadrupole moment and root mean square charge radius of the ground and long-lived isomeric states of 62–80Zn isotopes. Based on these properties, together with shell-model calculation from different interactions, we discussed systematically the nuclear structure phenomena, such as the shell structure evolution, magicity, deformation and shape coexistence, and the cross-shell excitation of correlated nucleons. At the end, on the basis of the current experimental data and nuclear structure information, as well as the theoretical prediction of energy level evolution of N=51 isotones in nickel region, we propose to measure the basic properties of 81,82Zn nuclei at the collinear resonance ionization spectroscopy setup at ISOLDE-CERN.
Read full abstract