We analyze the spin flip loss for ultracold neutrons in magnetic bottles of the type used in experiments aiming at a precise measurement of the neutron lifetime, extending the one-dimensional field model used previously by Steyerl $\textit{et al.}$ [Phys.Rev.C $\mathbf{86}$, 065501 (2012)] to two dimensions for cylindrical multipole fields. We also develop a general analysis applicable to three dimensions. Here we apply it to multipole fields and to the bowl-type field configuration used for the Los Alamos UCN$\tau$ experiment. In all cases considered the spin flip loss calculated exceeds the Majorana estimate by many orders of magnitude but can be suppressed sufficiently by applying a holding field of appropriate magnitude to allow high-precision neutron lifetime measurements, provided other possible sources of systematic error are under control.