The study of massive neutrinos and their interactions is a critical aspect of contemporary cosmology. Recent advances in parallel computation and high-performance computing provide new opportunities for accurately constraining Large-Scale Structures (LSS). In this paper, we introduce the TianNu cosmological N-body simulation during the co-evolution of massive neutrino and cold dark matter components via the CUBEP3M code running on the supercomputer Tianhe-2 and TianNu’s connected works. We start by analyzing 2.537×107 dark halos from the scientific data of TianNu simulation, and compare their angular momentum with the matched halos from neutrino-free TianZero, revealing a dependence of angular momentum modulus on neutrino injection at scales below 50 Mpc and around 10 Mpc.