As the automobile industry is transitioning toward electric vehicles, manufacturers have started implementing local warmers alongside cabin heating, ventilation, and air conditioning (HVAC) systems for effective thermal comfort management. However, optimal operating strategies need to be developed for integrating local warmers with HVAC systems. Although the Berkeley models comprising local/overall thermal sensation and comfort models offer insights in this regard, they lack follow-up assessments for occupants transitioning from very cold states. In this study, Berkeley models were evaluated using two sets of experimental data collected in a transient vehicle cabin under cold outdoor conditions: test (A) with cabin HVAC alone and test (B) with both HVAC and local warmers. The findings confirm the satisfactory performances of the Berkeley models for predicting overall sensation and comfort, with a maximum root mean-squared error (RMSE) of 0.15. The local comfort model performed poorly with the original coefficients across both datasets (maximum RMSE of 1.96). Therefore, the model coefficients were regressed for the dataset from test A and validated against the dataset from test B to achieve a maximum RMSE of 0.49. With these regressed coefficients, it was observed that moving toward a neutral overall state diminished the potential to maximize local comfort. Conversely, the local sensation model showed poor agreement (maximum RMSE of 1.9); we confirmed that accurate adaptive setpoint temperatures are a prerequisite for ensuring good predictions from the model. These findings are expected to contribute toward future efforts in using Berkeley models to formulate effective local warmerâHVAC operational strategies in electric vehicles.
Read full abstract