The study of through-space electronic coupling in π-conjugated systems remains an underexplored area. In this work, we present the facile synthesis of two isomeric macrocycles (1 and 2) bridged by [2,2]paracyclophane (pCp) and based on thiophene. The structures of these macrocycles have been confirmed through X-ray crystallographic analysis. Our investigation centers on their electronic properties across various redox states, with a specific focus on potential through-space electronic coupling and global aromaticity. Experimental measurements, including UV-vis-NIR electronic absorption, NMR, ESR spectra, and X-ray diffraction, combined with theoretical calculations, reveal that both the neutral compounds and their tetracations exhibit a closed-shell ground state. However, their dications manifest as diradical dications with a subtle magnetic exchange interaction. Consequently, the through-space electronic coupling facilitated by the pCp unit in their respective ground states appears to be weak.
Read full abstract