A common animal model of muscle pathology following rotator cuff tear (RCT) is a tenotomy of the supraspinatus and infraspinatus, often combined with neurotomy of the suprascapular nerve, which induces a more robust atrophy response than tenotomy alone. However, the utility of this model depends on its similarity to human muscle pathology post-RCT, both in terms of the disease phenotype and mechanisms of muscle atrophy and fatty infiltration. Given the clinical prevalence of nerve injury is low and the muscular response to denervation is distinct from mechanical unloading in other models, an understanding of the biological influence of the nerve injury is critical for interpreting data from this RCT model. We evaluated the individual and combined effect of tenotomy and neurotomy across multiple biological scales, in a robust time-series in the mouse supraspinatus. Muscle composition, histological, and gene expression data related to muscle atrophy, degeneration-regeneration, fatty infiltration, and fibrosis were evaluated. Broadly, we found tenotomy alone caused small, transient changes in these pathological features, which resolved over the course of the study, while neurotomy alone caused a significant fatty atrophy phenotype. The dual injury group had a similar fatty atrophy phenotype to the neurotomy group, though the addition of tenotomy did marginally enhance the fat and connective tissue. Overall, these results suggest the most clinically relevant injury model, tenotomy alone, does not produce a clinically relevant phenotype. The dual injury model partially recapitulates the human condition, but it does so through a nerve injury, which is not well justified clinically.
Read full abstract