Wu et al. (2021) investigated the neuroprotective effects of hypoxia preconditioning (HPC) in a rat model of traumatic brain injury (TBI). The study demonstrated that HPC enhances brain resilience to TBI by upregulating glucose transporters GLUT1 and GLUT3 through the HIF-1α signaling pathway. Comprehensive molecular and histological analyses confirmed increased expression of these transporters, correlating with reduced neuronal apoptosis and cerebral edema. The robust methodology, including rigorous statistical validation and time-course assessments, underscores HPC's potential therapeutic role in mitigating neuronal loss and improving glucose transport post-injury. However, the study could be strengthened by incorporating additional preconditioning controls, comparative analyses with other neuroprotective strategies, and exploring downstream metabolic effects in greater detail. Furthermore, expanding the research to include diverse animal models and examining sex-dependent responses would enhance the generalizability and translational relevance of the findings. Future studies should also integrate metabolic flux analysis and advanced imaging techniques to further elucidate HPC's mechanisms of action.