Autism spectrum disorder (ASD), or simply autism, is a neurodevelopmental disorder characterized by social communication deficit, restricted interests, and repetitive behavior. Several studies suggested a link between autism and the dysregulation of the Wnt signaling pathway which is mainly involved in cell fate determination, cell migration, cell polarity, neural patterning, and organogenesis. Despite the absence of effective therapy, significant progress has been made in understanding the pathogenesis of ASD. Neuropharmacological studies showed that drugs acting on the Wnt pathway like Canagliflozin can alleviate autistic-like behavior in animal models. Hence, this pathway could potentially be a futuristic therapeutic target to mitigate autism's symptoms. This systematic review aims to collect and analyze evidence that elucidates how alterations in the Wnt pathway may contribute to the pathogenesis of autism in animal models at the molecular, cellular, and physiological levels. Comprehensive searches were conducted across multiple databases, including PubMed, Web of Science, Embase, and Scopus to identify relevant studies up to March 2024. The inclusion criteria encompassed experimental studies that focused on the link between autism and this pathway, and the quality assessment was ensured by SYRCLE's risk of bias tools. Collectively, the included articles highlighted the possible implication of this pathway in the abnormalities found in autism, which impacted processes such as energy metabolism, oxidative stress, and neurogenesis. These alterations could underlie autistic behavior by affecting synaptic transmission and mitochondrial function.
Read full abstract