The neuropeptide FF (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH 2) and its synthetic analogs bind to specific receptors in the spinal cord to produce antinociceptive effects that are partially attenuated by opioid antagonists, and at sub-effective doses neuropeptide FF receptor agonists augment spinal opioid antinociception. Since adenosine plays an intermediary role in the production of spinal opioid antinociception, this study investigated whether this purine has a similar role in the expression of spinal effects produced by neuropeptide FF receptor agonists. In rats bearing indwelling spinal catheters, injection of adenosine receptor agonists, N6-cyclohexyladenosine (CHA, 1.72 nmol) and N-ethylcarboxiamidoadenosine (NECA, 1.95 nmol), as well as morphine (13.2 nmol) elicited antinociception in the tail-flick and paw-pressure tests. Pretreatment with intrathecal 8-phenyltheophylline (5.9 and 11.7 nmol), an adenosine receptor antagonist, blocked the effect of all three agents without influencing baseline responses. Administration of two synthetic neuropeptide FF (NPFF) analogs, [ d-Tyr 1,(NMe)Phe 3]NPFF (1DMe, 0.86 nmol) and [ d-Tyr 1, d-leu 2, d-Phe 3]NPFF (3D, 8.6 nmol) produced sustained thermal and mechanical antinociception. Pretreatment with doses of intrathecal 8-phenyltheophylline (5.9, 11.7 and 23.5 nmol), producing adenosine receptor blockade, significantly inhibited the antinociceptive effects of 1DMe or 3D. Injection of a sub-antinociceptive dose of 1DMe (0.009 nmol) significantly augmented the antinociceptive effect of intrathecal morphine (13.2 nmol) in the tail-flick and paw-pressure tests. Intrathecal 8-phenyltheophylline (11.7 nmol) reduced the effect of this combination. Administration of low dose of 1DMe (0.009 nmol) or 3D (0.009 nmol) very markedly potentiated the antinociceptive actions of the adenosine receptor agonist, N6-cyclohexyladenosine (0.43, 0.86 and 1.72 nmol) in the tail-flick and paw-pressure tests 50 min after injection. The results suggest that the antinociceptive and morphine modulatory effects resulting from activation of spinal NPFF receptors could be due to an increase in the actions or availability of adenosine.