AimErigeron breviscapus (Vant.) Hand.-Mazz. (EB) granules is the extract preparation of EB, with clear curative effect and unclear mechanism. This study intends to systematically explore the specific mechanism of EB granules in the treatment of IS from the metabolic perspective. MethodsThe model of transient middle cerebral artery occlusion (tMCAO) in mice was established by the suture-occluded method. The therapeutic effect of EB granules on tMCAO mice was evaluated by behavioral evaluation, brain water content determination, 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and levels of lactate dehydrogenase (LDH) and neuron specific enolase (NSE) in serum. In order to screen differential metabolites, non-targeted metabolomics technology was used to detect the metabolites in serum before and after administration. Univariate statistics, multivariate statistics and bioinformatics were used to analyze the changes of metabolites in serum of tMCAO mice. The possible related mechanism of EB granules in treating IS was screened by pathway enrichment analysis, and the preliminary verification was carried out at animal level by enzyme linked immunosorbent assay (ELISA) and western blot (WB). ResultsEB granules could significantly improve behavior of tMCAO mice, reduce brain water content and cerebral infarction volume, improve morphology of brain tissue, reduce the levels of LDH and NSE in serum. A total of 232 differential metabolites were screened, which were mainly enriched in many biological processes such as sphingolipid metabolism. The differential metabolite S1P and its receptors S1PR1 and S1PR2 in sphingolipid metabolism were verified. The results showed that the level of S1P in brain tissue increased and the protein expression of S1PR1 decreased significantly after modeling, and reversed after administration, but there was no significant difference in the protein expression of S1PR2. ConclusionThe therapeutic effects of EB granules may be related to affecting sphingolipid metabolism through regulating S1P/S1PR1.