Transplantation of whole ganglia was used to study the regeneration of four of the neurons that innervate the superficial flexor muscles of the crayfish Procambarus clarkii. The isolated ganglia containing the somas of these neurons were successfully transplanted from one crayfish to another. Reinnervation proceeded across the muscle surface and by 8 to 10 weeks connections were detected across the entire target field. At different time periods after the transplant, junction potentials (JPs) produced in phase with spontaneous neuronal spikes were recorded. The distribution of JP sizes and their decay times were examined. JPs from transplanted preparations were smaller than JPs from control or normal regeneration animals. These JPs also failed to facilitate when stimulated at 1 and 10 Hz. These are normal characteristics of immature terminals, but in the transplant preparations, once established, they remained stable for the duration of the study. Thus, synaptogenesis appears to be arrested at a stage before synaptic efficacy is established in the allotransplants. In addition, connectivity maps were plotted for each axon over the muscle surface. Some muscle fibers did not receive any contacts, and overall innervation leveled off at around 60% of the muscle fibers, remaining stable for the duration of this study. Despite the incomplete physiological innervation, however, three of the four neurons showed the same medial/lateral preferences observed in control animals, regenerating their original patterns of connectivity across the muscle surface.
Read full abstract