Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis. Reduced glutathione (GSH) has antioxidant properties and is used as a neuroprotective agent in some studies. However, research on the application of exogenous GSH in the treatment of SAE is limited. This study aimed to determine the effects of exogenous GSH in pediatric SAE patients and mice. We evaluated clinical parameters, inflammatory factors, and oxidative stress before and after GSH treatment. The clinical trials demonstrated that GSH treatment improved brain damage markers (S-100 beta protein, brain fatty acid-binding protein), increased neurological status scores (Glasgow coma scale), and reduced Pediatric Risk of Mortality III scores in children with SAE. GSH treatment also significantly reduced the levels of inflammatory factors (interleukin-6, tumor necrosis factor-α) and decreased lipid peroxidation (superoxide dismutase). Additionally, GSH reduced lipid peroxidation resulting from abnormal lipid metabolism, as indicated by the levels of acyl-CoA synthetase long-chain family member 4, lysophosphatidylcholine acyltransferase 3, and glutathione peroxidase 4. In-vivo experiments showed that the neuroprotective effect of GSH was dose-dependent, with better effects observed at medium and high doses. Furthermore, GSH alleviated brain damage, suppressed the release of inflammatory factors, and inhibited lipid peroxidation in SAE mice. The animal experiments also showed that GSH reduces lipid peroxidation through the 15-lipoxygenase/phosphatidylethanolamine binding protein 1/glutathione peroxidase 4 pathway. Our study suggests that exogenous GSH has neuroprotective effects in pediatric SAE. These findings provide a basis for the potential use of GSH as a therapeutic method for SAE.