Antagonists at substance P receptors of the neurokinin 1 (NK1) type have been shown to represent a novel class of antidepressant drugs, with comparable clinical efficacy to the selective serotonin (5-HT) reuptake inhibitors (SSRIs). Because 5-HT(1A) receptors may be critically involved in the mechanisms of action of SSRIs, we examined whether these receptors could also be affected in a model of whole-life blockade of NK1 receptors, i.e. knock-out mice lacking the latter receptors (NK1-/-). 5-HT(1A) receptor labeling by the selective antagonist radioligand [(3)H]N-[2-[4-(2-methoxyphenyl)1-piperazinyl]-ethyl]-N-(2-pyridinyl)-cyclohexanecarboxamide (WAY 100635) and 5-HT(1A)-dependent [(35)S]GTP-gamma-S binding at the level of the dorsal raphe nucleus (DRN) in brain sections, as well as the concentration of 5-HT(1A) mRNA in the anterior raphe area were significantly reduced (-19 to -46%) in NK1-/- compared with NK1+/+ mice. Furthermore, a approximately 10-fold decrease in the potency of the 5-HT(1A) receptor agonist ipsapirone to inhibit the discharge of serotoninergic neurons in the dorsal raphe nucleus within brainstem slices, and reduced hypothermic response to 8-OH-DPAT, were noted in NK1-/- versus NK1+/+ mice. On the other hand, cortical 5-HT overflow caused by systemic injection of the SSRI paroxetine was four- to sixfold higher in freely moving NK1-/- mutants than in wild-type NK1+/+ mice. Accordingly, the constitutive lack of NK1 receptors appears to be associated with a downregulation/functional desensitization of 5-HT(1A) autoreceptors resembling that induced by chronic treatment with SSRI antidepressants. Double immunocytochemical labeling experiments suggest that such a heteroregulation of 5-HT(1A) autoreceptors in NK1-/- mutants does not reflect the existence of direct NK1-5-HT(1A) receptor interactions in normal mice.