Crucial aspects in the development of in vitro neuropathogenic disease model systems are the identification, characterization and continuous mitotic expansion of cultured neuronal cells. To facilitate long-term cultivation, we immortalized porcine olfactory neuronally restricted progenitor cells by genomic insertion of a cDNA encoding the catalytic subunit of the human telomerase reverse transcriptase (hTERT) yielding a stable neuroblast subclone (OBGF400). The altered cells exhibited progenitor-cell-like morphology and mitotic competency based on sustained subpassaging, prevalence in the cell cycle G0/G1 phase and an overall lack of cellular senescence as compared to primary cultures. An OBGF400 neuronal phenotype was indicated by the recognition of a transfected neuronal progenitor-cell-specific tubulin-α1 gene promoter, intracellular presence of early neuronal markers (TuJ1, neuregulin-1, doublecortin and SOX2) and enhanced expression of neuronal- and progenitor lineage-active genes (MAP2, nestin, ENO and Syn1) compared to that of porcine epithelial cells. These OBGF400 neuroblasts are likely dependent on telomerase to prevent terminal differentiation as subcultures with a predominance of neuronally differentiated members had less enzymatic activity. Based on its susceptibility to a porcine alphaherpesvirus infection, this novel neuroblast cell line may be useful for exploring neuronal cell–pathogen interactions in vitro.
Read full abstract