This study used a typical four-item search display to investigate top-down control over attentional capture in an additional singleton paradigm. By manipulating target and distractor color and shape, stimulus saliency relative to the remaining items was systematically varied. One group of participants discriminated the side of a dot within a salient orange target (ST group) presented with green circles (fillers) and a green diamond distractor. A second group discriminated the side of the dot within a green diamond target presented with green circle fillers and a salient orange square distractor (SD group). Results showed faster reaction times and a shorter latency of the N2pc component in the event-related potential (ERP) to the more salient targets in the ST group. Both salient and less salient distractors elicited Pd components of equal amplitude. Behaviorally, no task interference was observed with the less salient distractor, indicating the prevention of attentional capture. However, reaction times were slower in the presence of the salient distractor, which conflicts with the hypothesis that the Pd reflects proactive distractor suppression. Contrary to recent proposals that elicitation of the Pd requires competitive interactions with a target, we found a greater Pd amplitude when the distractor was presented alone. Alpha-band amplitudes decreased during target processing (event-related desynchronization), but no significant amplitude enhancement was observed at electrodes contralateral to distractors regardless of their saliency. The results demonstrate independent neural mechanisms for target and distractor processing and support the view that top-down guidance of attention can be offset (counteracted) by relative stimulus saliency.
Read full abstract