Medical genomics faces significant challenges in interpreting disease phenotype and genetic heterogeneity. Despite the establishment of standardized disease phenotype databases, computational methods for predicting gene-phenotype associations still suffer from imbalanced category distribution and a lack of labeled data in small categories. To address the problem of labeled-data scarcity, we propose a self-supervised learning strategy for gene-phenotype association prediction, called SSLpheno. Our approach utilizes an attributed network that integrates protein-protein interactions and gene ontology data. We apply a Laplacian-based filter to ensure feature smoothness and use self-supervised training to optimize node feature representation. Specifically, we calculate the cosine similarity of feature vectors and select positive and negative sample nodes for reconstruction training labels. We employ a deep neural network for multi-label classification of phenotypes in the downstream task. Our experimental results demonstrate that SSLpheno outperforms state-of-the-art methods, especially in categories with fewer annotations. Moreover, our case studies illustrate the potential of SSLpheno as an effective prescreening tool for gene-phenotype association identification. https://github.com/bixuehua/SSLpheno.
Read full abstract