Background: The fusarium wilt disease of chickpea leaves is a common illness that leads to economic problems for farmers due decreased crop yield. Early disease detection and the implementation of suitable precautions can help to increase the yield of chickpeas. This study offers an improved method for Fusarium wilt disease prediction based on severity level using a convolutional neural learning algorithm. Methods: The Convolutional Neural Network (CNN) model is utilized in this work to identify leaf disease due to wilting. The dataset contains 4,339 images of chickpea leaves that were obtained from Kaggle. After preprocessing, the data is sent into the network model for training. The model shows acceptable classification and accuracy metrics. Result: Deep learning methods are very useful tools for tracking leaf diseases at their early stages and can help farmers with the use of controlling methods. The proposed work looks for changes in the shape and color of chickpea leaves in order to predict severe fusarium disease. Training and validation accuracies show a balanced trade-off by giving satisfactory outcomes. The model shows an overall accuracy of 74.79%. The confusion matrix and classification parameters increase the model’s performance.
Read full abstract