Abstract

The article considers the relevance of the introduction of intelligent weed detection systems, in order to save herbicides and pesticides, as well as to obtain environmentally friendly products. A brief review of the researchers' scientific works is carried out, which describes the methods of identification, classification and discrimination of weeds developed by them based on machine learning algorithms, convolutional neural networks and deep learning algorithms. This research paper presents a program for detecting pests of agricultural land using the algorithms K-Nearest Neighbors, Random Forest and Decision Tree. The data set is collected from 4 types of weeds, such as amaranthus, ambrosia, bindweed and bromus. According to the results of the assessment, the accuracy of weed detection by the classifiers K-Nearest Neighbors, Random Forest and Decision Tree was 83.3%, 87.5%, and 80%. Quantitative results obtained on real data demonstrate that the proposed approach can provide good results in classifying low-resolution images of weeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.