Electrode arrays used in neural recording and stimulation applications must be implanted carefully to minimize damage to the underlying tissue. A device has been designed to improve a surgeon's control over implantation parameters including depth, insertion velocity, and insertion force. The device has been designed to operate without contacting tissue and to respond to tissue movements in real time during insertion. This device uses an electrical motor to drive electrode arrays into tissue and allows for the monitoring of and response to electrode depth during insertion. A prototype device has been constructed and tests have been performed to determine the velocity and force characteristics of the motor when inside the device housing. Future versions of the device will use a custom-designed motor with longer linear travel, which will allow the insertion device to be held farther from tissue while still ensuring proper array insertion.