Dual-functional stability (DFS) in cognitive and physical abilities is important for successful aging. This study examines the brain topology profiles that underpin high DFS in older adults by testing two hypotheses: (1) older adults with high DFS would exhibit a unique brain organization that preserves their physical and cognitive functions across various tasks, and (2) any individuals with this distinct brain topology would consistently show high DFS. We analyzed two cohorts of cognitively and physically healthy older adults from the UK (Cam-CAN, n = 79) and the US (CF, n = 48) using neuroimaging data and a combination of cognitive and physical tasks. Variability in DFS was characterized using k-mean clustering for intra-individual variability (IIV) in cognitive and physical tasks. Graph theory analyses of diffusion tensor imaging connectomes were used to assess brain network segregation and integration through clustering coefficients (CCs) and shortest path lengths (PLs). Using support vector machine and regression, brain topology features, derived from PLs + CCs, differentiated the high DFS subgroup from low and mix DFS subgroups with accuracies of 65.82% and 84.78% in Cam-CAN and CF samples, respectively, which predicted cross-task DFS score in CF samples at 58.06% and 70.53% for cognitive and physical stability, respectively. Results showed distinctive neural correlates associated with high DFS, notably varying regional brain segregation and integration within critical areas such as the insula, frontal pole, and temporal pole. The identified brain topology profiles suggest a distinctive neural basis for DFS, a trait indicative of successful aging. These insights offer a foundation for future research to explore targeted interventions that could enhance cognitive and physical resilience in older adults, promoting a healthier and more functional lifespan.