Numerous cortical disorders affect language. We explore the connection between the observed language behavior and the underlying substrates by adopting a neurocomputational approach. To represent the observed trajectories of the discourse in patients with disorganized speech and in healthy participants, we design a graphical representation for the discourse as a trajectory that allows us to visualize and measure the degree of order in the discourse as a function of the disorder of the trajectories. Our work assumes that many of the properties of language production and comprehension can be understood in terms of the dynamics of modular networks of neural associative memories. Based upon this assumption, we connect three theoretical and empirical domains: (1) neural models of language processing and production, (2) statistical methods used in the construction of functional brain images, and (3) corpus linguistic tools, such as Latent Semantic Analysis (henceforth LSA), that are used to discover the topic organization of language. We show how the neurocomputational models intertwine with LSA and the mathematical basis of functional neuroimaging. Within this framework we describe the properties of a context-dependent neural model, based on matrix associative memories, that performs goal-oriented linguistic behavior. We link these matrix associative memory models with the mathematics that underlie functional neuroimaging techniques and present the “functional brain images” emerging from the model. This provides us with a completely “transparent box” with which to analyze the implication of some statistical images. Finally, we use these models to explore the possibility that functional synaptic disconnection can lead to an increase in connectivity between the representations of concepts that could explain some of the alterations in discourse displayed by patients with schizophrenia.
Read full abstract