This study makes a significant contribution to the field of pervious concrete by using machine learning to innovatively predict both mechanical and hydraulic performance. Unlike existing methods that rely on labor-intensive trial-and-error experiments, our proposed approach leverages a multilayer perceptron network. To develop this approach, we compiled a comprehensive dataset comprising 271 sets and 3,252 experimental data points. Our methodology involved evaluating 22,246 network configurations, employing Monte Carlo cross-validation over 20 iterations, and using 4 training algorithms, resulting in a total of 1,779,680 training iterations. This results in an optimized model that integrates diverse mix design parameters, enabling accurate predictions of permeability and compressive strength even in the absence of experimental data, achieving R² values of 0.97 and 0.98, respectively. Sensitivity analyses validate the model's alignment with established principles of pervious concrete behavior. By demonstrating the efficacy of machine learning as a complementary tool for optimizing pervious concrete mix designs, this research not only addresses current methodological limitations but also lays the groundwork for more efficient and effective approaches in the field.