One of the most challenging issues in contemporary complex network research is to understand the structure and vulnerability of multilayer networks, even though cascading failures in single networks have been widely studied in recent years. The goal of this work is to compare the similarities and differences between four single layers and understand the implications of interdependencies among cities on the overall vulnerability of a multilayer global logistics network. In this paper, a global logistics network model set as a multilayer network considering cascading failures is proposed in different disruption scenarios. Two types of attack strategies—a highest load attack and a lowest load attack—are used to evaluate the vulnerability of the global logistics network and to further analyze the changes in the topology properties. For a multilayer network, the vulnerability of single layers is compared as well. The results suggest that compared with the results of a single global logistics network, a multilayer network has a higher vulnerability. In addition, the heterogeneity of networks plays an important role in the vulnerability of a multilayer network against targeted attacks. Protecting the most important nodes is critical to safeguard the potential “vulnerability” in the development of the global logistics network. The three-step response strategy of “Prewarning–Response–Postrepair” is the main pathway to improving the adjustment ability and adaptability of logistics hub cities in response to external shocks. These findings supplement and extend the previous attack results on nodes and can thus help us better explain the vulnerability of different networks and provide insight into more tolerant, real, complex system designs.
Read full abstract