Recently, switched Ethernet has become an active area of research because of its wide uses in industry. However, its uses have various real-time constraints on data communications. This paper analyzes the performance of the line topology switched Ethernet as a data acquisition network. Network calculus theory, which has been successfully applied to assess the real-time performance of packet-switched networks, is used to analyze the networks. To properly describe the activity of switches, a novel approach of modeling data flows into or out of switches is addressed. Based on our model, a concisely analytical expression of the maximal end-to-end delay in line topology switched Ethernet is derived. Finally, the relative simulation results are demonstrated. These results agree well with the analytical results, and thus they validate the data flow modeling techniques.
Read full abstract