Holocellulose (HC) fraction extracted from date-pits was evaluated as a novel feed additive for ruminant feeding. This study was performed to investigate the effectiveness of the HC additive on rumen fermentation, methane (CH4) production, and diet degradability over 24h of in vitro incubation. Three independent incubation trials were conducted over three consecutive weeks, employing the same in vitro methodology to assess four treatment doses in a completely randomized design. The experimental diet incorporated four increasing doses of HC, containing HC at 0 (HC0), 10 (HC10), 20 (HC20), and 30 (HC30) g/kg dry matter (DM). In vitro gas production (GP) and CH4 production, volatile fatty acids (VFAs) concentration, protozoa accounts, degraded organic matter (DOM), metabolizable and net energy (ME and NE), and hydrogen (H2) estimates were measured. No significant differences in ruminal pH were observed as the HC doses gradually increased. All incremental doses of HC additive over 24h resulted in a linear increase in GP (P < 0.001), DOM (P < 0.001), total VFAs (P = 0.011), and propionate (P < 0.001) concentrations, as well as estimated energy (ME and NE) (P < 0.05) and microbial protein (P = 0.017) values. However, the inclusion of increasing doses of HC in the diet displayed linear reductions in the net CH4 production (ml/kg DOM; P = 0.002), protozoa abundance (P = 0.027); acetate (P = 0.029), and butyrate (P < 0.001) concentrations, the acetate-to-propionate ratio (P < 0.001), and the estimated net H2 production concentration (P = 0.049). Thus, the use of date-pits HC additive generated positive ruminal fermentability, including increased total VFAs and a reduction in the acetate-to-propionate ratio, leading to decreased CH4 output over 24h of in vitro incubation. Hence, HC could be considered a potent feed additive (at up to 30g/kg DM), demonstrating promising CH4-mitigating competency and thereby enhancing energy-use efficiency in ruminants.