Abstract

The emission of methane (CH4) from streams and rivers contributes significantly to its global inventory. The production of CH4 is traditionally considered as a strictly anaerobic process. Recent investigations observed a “CH4 paradox” in oxic waters, suggesting the occurrence of oxic methane production (OMP). Human activities promoted dissolved organic carbon (DOC) in streams and rivers, providing significant substrates for CH4 production. However, the underlying DOC molecular markers of CH4 production in river systems are not well known. The identification of these markers will help to reveal the mechanism of methanogenesis. Here, Fourier transform ion cyclotron mass spectrometry and other high-quality DOC characterization, ecosystem metabolism, and in-situ net CH4 production rate were employed to investigate molecular markers attributing to riverine dissolved CH4 production across different land uses. We show that endogenous CH4 production supports CH4 oversaturation and positively correlates with DOC concentrations and gross primary production. Furthermore, sulfur (S)-containing molecules, particularly S-aliphatics and S-peptides, and fatty acid-like compounds (e.g., acetate homologs) are characterized as markers of water-column aerobic and anaerobic CH4 production. Watershed characterization, including riverine discharge, allochthonous DOC input, turnover, as well as autochthonous DOC, affects the CH4 production. Our study helps to understand riverine aerobic or anaerobic CH4 production relating to DOC molecular characteristics across different land uses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call