A study was conducted on a native pasture (dominated by redgrass, Bothriochloa macra) in the Barraba district of northern New South Wales to examine the effects of 5 grazing treatments on total herbage mass, litter mass, basal cover, ground cover, sheep liveweight, wool production and soil water content (SWC, mm) at different depths. Plots were grazed with Merino wethers and data were collected from spring 1997 to spring 2001 and analysed to determine the effects of treatments on both production and sustainability. Five grazing treatments were applied in a randomised 3 replicate design. Grazing treatments were: continuous grazing at 4 and 6 sheep/ha (C4 and C6), continuous grazing at 8 sheep/ha, with subterranean clover (Trifolium subterraneum) oversown and fertiliser applied (C8+sub), and, rotational grazing at an annual stocking rate of 4 sheep/ha with pasture grazed for 4 weeks and rested for 4 weeks (R4/4), or rested for 12 weeks (R4/12).Total herbage mass declined in the C4 (control) treatment throughout the experiment and, compared with this treatment, the C6 treatment had less (P<0.007) linear trend over time, while the R4/12 treatment had a greater (P<0.001) linear trend. Stocking rates could not be maintained in the C4 and C6 treatments and sheep were supplementary fed or removed from these treatments for a total of 133 and 263 days, respectively. For ground cover, the linear trend was greater (P<0.05) in the C8+sub, R4/4, and R4/12 treatments compared with the continuously grazed C4 and C6 treatments and for litter mass this trend was also greater (P<0.05) for the R4/12 treatment than the C4 treatment. Basal cover of wiregrass (Aristida ramosa), wallaby grass (Austrodanthonia spp.) and windmill grass (Chloris truncata) was not affected by grazing treatment but for redgrass the linear trend was greater (P<0.05) in the C8+sub, R4/4, and R4/12 treatments compared with the C4 and C6 treatments. Sheep liveweight (kg/head) was greater (P<0.001) in the C8+sub treatment compared with the C4 treatment. Annual wool production (kg/head) was also higher (P<0.05) in the C8+sub treatment compared with all other treatments. Compared with the C4�treatment, significant differences in soil water content occurred in the R4/12 and C8+sub treatments, but these were predicted to be only 2.9 mm per year for the R4/12 treatment (0–30 cm depth) and 5.7 mm per year for the C8+sub treatment (30–170 cm). Use of a biophysical model indicated that evapotranspiration was the largest output term in the soil water balance and that both drainage and surface runoff of water were episodic events. A sustainability index derived from economic (equivalent annual net return ($/ha) for a 10-year period), animal production, pasture, soil health and soil water data indicated that the C4 and C6 treatments had the lowest scores for each of these parameters and the lowest overall indices. These scores were highly correlated with subjective assessments of the impact of the treatments (r�=�0.93). Overall, these data indicated substantial benefits of either rotationally grazing or the addition of fertiliser and subterranean clover to the production and sustainability of the native pasture studied.
Read full abstract